SEPA

Development of an aerosol-compatible cell culture exposure system and its application to quantify cellular uptake of particles at the air-liquid interface

Jessica R. Murray, PhD

US EPA: Office of Research and Development Center for Public Health and Environmental Assessment Public Health and Integrated Toxicology Division AIT Webinar: November 29, 2022

The research described in this presentation has been reviewed by the Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does the mention of trade names of commercial products constitute endorsement or recommendation for use.

Methodologically Challenging Chemicals Require Advanced Exposure Methods

Over 10% of the Toxic Substances Control Act (TSCA) inventory includes volatile organic compounds (VOCs) and insoluble compounds which are incompatible with high-throughput screening.

To address this challenge, we need to accomplish the following:

- 1. Develop ALI exposure technology to include VOCs and insoluble chemicals in screening efforts
- 2. Create analytical dosimetry methods to quantify deposition and cellular uptake
- 3. Identify appropriate human lung cell models and endpoints to protect human health

EPA Cell Culture Exposure System (CCES)

The Inhalation Toxicology Facilities Branch (ITFB) developed the EPA's **Cell Culture Exposure Systems (CCES)** which permits dynamic exposure of human lung cells to VOCs at **air-liquid interface (ALI)**.

- Medium-throughput: 6 doses + 4 technical replicates within standard 24-well cell culture plate
 - Allows Benchmark Dose (BMD) modeling to estimate in vitro Points of Departure (PODs) for portal of entry effects
- Real-time sampling allows accurate exposure conditions to be reported throughout 2 h exposure

EPA Cell Culture Exposure System (CCES)

- Heated enclosure is key to maintaining 37°C and >80% RH throughout 2 h exposure condition
- No changes in viability or TEER observed after 2 h exposure in CCES

SEPA

16HBF

pHBEC

BMD Values Share Similarities to TLV Rank Order Following VOC Exposures at Air-liquid Interface (ALI)

Benchmark Dose Modeling Approaches for Volatile Organic Chemicals Using a Novel Air-Liquid Interface *In Vitro* Exposure System

Adam M Speen 🐱, Jessica R Murray, Quentin Todd Krantz, David Davies, Paul Evansky, Joshua A Harrill, Logan J Everett, Joseph L Bundy, Lisa A Dailey, Jazzlyn Hill ... Show more

Acrolein 1 3-Butadiene Cell Viability (%) Relative to Inc. Ct. 0.01 10 100 1000 0.01 0.1 Concentration Concentration (ppr Concentration (ppm) Concentration (ppn Carbon Tetrachloride 1-Bromonronan Dichloromethan Trichloroethylen Cell Viability (%) elative to Inc. Ct. 0.1 Concentration (ppm Concentration (ppm Concentration (ppr Concentration (ppm **Exposure Regimen** 2 h exposure at ALI in 24-well format, endpoints analyzed 4 h later Endpoints Viability (ATP), n=2; Cytotoxicity (LDH), n=4; TempO-Seq (n=2) **Biological Replicates** Conducted over three days, n=3

Benchmark Dose Analysis:

- HTTr TempO-Seq analysis at sub-cytotoxic concentrations
- Comparative to representative *in vivo* LOAEL/NOAEL values

• Within a magnitude of ACGIH occupational exposure TLVs

Chemical Name	BEAS-2B Median BMD (ppm)	HPBE Median BMD (ppm)	Representative LOAEL (ppm)	Representative NOAEL (ppm)	TLV (ppm)
Acrolein	0.586		0.25	NR	0.1
1-Bromopropane	2.246	N/A	62.5	250	0.1
Formaldehyde	N/A		2	1	0.3
1,3-Butadiene	13.979		625	200	10
Carbon Tetrachloride	9.563	N/A	20	5	10
Acetaldehyde	N/A		400	150	25
Trichloroethylene	44.842	28.148	50	25	50
Dichloromethane	142.127	226.73	8400	4200	100

Toxicological Sciences, Volume 188, Issue 1, July 2022, Pages 88–107, https://doi.org/10.1093/toxsci/kfac040

\$EPA

Nominated List Includes Non-Volatile Chemicals

Office of Pesticide Programs (OPP) and Office of Pollution Prevention and Toxics (OPPT) nominated the following list for further evaluation:

- Didecyl dimethyl ammonium chloride: antiseptic/disinfectant -
- Polyhexamethylene guanidine-phosphate: *disinfectant*
- O-phenylphenol: *biocide used as preservative*
- Metribuzin: herbicide
- Tetramethrin: insecticide
- Indoxacarb: *pesticide*
- Naled: *insecticide*
- Oxamyl: *pesticide*
- Azoxystrobin: pesticide & fungicide
- Zinc pyrithione: *fungistatic & bacteriostatic*

Science.org "Does disinfecting surfaces really prevent the spread of coronavirus?"

Must be generated as aerosols: utilized a Blaustein Atomizer Module (BLAM) paired with syringe pump to generate liquid aerosols at high particle concentrations with a narrow particle size distribution

Transport Physics and Deposition Mechanisms Differ Between VOCs and Particles

Complementary Methods to Examine Particle Delivery

SFPA

Navier-Stokes Equation for Incompressible Flow

$$\frac{d}{dt}\int_{\Omega}\rho d\Omega + \int_{S}\rho (\vec{V}\cdot\vec{n}_{S})dS = 0$$

$$\frac{d}{dt}\int_{\Omega}(\rho\vec{V})d\Omega + \int_{S}(\rho\vec{V})(\vec{V}\cdot\vec{n}_{S})dS + \int_{S}(\vec{\vec{\tau}}\cdot\vec{n})dS = \int_{S}(-p\vec{n})dS$$

- Computer Aided Design (CAD) utilized to create replicas of exposure system
- Computational Fluid-Particle Dynamics (CFPD) Modeling applied: Eulerian-Langrangian approach
- *Limitations:* System components must be modeled separately to minimize computational expense

CAD Models of CCES Dilution Manifold for CFPD Simulation

CFD Boundary Conditions & Assumptions

Software	ANSYS Fluent
Dilution Inlet Flows	Define velocity to match CCES Operational Parameters
Delivery Outlets	Define negative velocity to match CCES Operational Parameters
Main Exhaust	Define pressure, P = 0
Wall	Constant temperature (37°C), "no slip" boundary condition
Turbulence Model	Laminar, Re < 20
Particle Movement	Discrete Phase Method, assumes particles ≤10% of total flow

Aerosol Incompatibility of Original VOC System

Aerosol Incompatibility of Original VOC System

CAD and CFD Streamline Prototype Testing

CFD Predicted Performance of New Dilution Manifold Humidified dilution air Fundified dilution air

Fluorescein vs. Half-Log Target

Asymmetrical Aerosol Flow Leads to Flow Splitter Failure

Fluorescein Deposition Patterns on Filters Confirms CFD Predictions

CFD-DPM Modeling vs. Empirical Testing for Full System

CFD + Discrete Phase Method

- DPM → Wall Film vs. Trap boundary conditions tested to estimate deposition
 - DPM impingement is based on Weber number, which does not consider electrostatic forces
- Very time intensive: 12-24 h+ per simulation

CFD-DPM Modeling vs. Empirical Testing for Full System

CFD + Discrete Phase Method

- DPM → Wall Film vs. Trap boundary conditions tested to estimate deposition
 - DPM impingement is based on Weber number, which does not consider electrostatic forces
- Very time intensive: 12-24 h+ per simulation

€PA

\$EPA

Aerosol-Compatible Cell Culture Exposure System (ACCES)

Fluorescein Deposition on 16HBE Cells

	Total (ng/cm ² /h)	St. Dev. (%)	Dilution Ratio
Nozzle 1	155.8	5%	
Nozzle 2	47.2	9%	0.30
Nozzle 3	14.4	5%	0.30

New System Delivers Both Aerosols and VOCs

SEPA

Half-Log Target

Modular, patent-pending design can be configured for aerosol or VOC dilution and delivery.

- Within the same system, drastically different ٠ operational conditions are required to deliver aerosols vs. VOCs
 - Aerosol operation: 5 mL min⁻¹ per well
 - VOC operation: 12.5 mL min⁻¹ per well
- Further work is needed to adapt the aerosol ٠ generation system to produce 6 doses of particles for a diverse list of test agents

SEPA

Cell-free Options to Estimate Deposition

- Cell-free collection methods are desirable as a high-throughput, low-cost method to quantify cell deposition to:
 - 1. Test improvements to aerosol generation system
 - 2. Quantify performance of ACCES (or other ALI exposure devices) for a variety of aerosols when fluorescence-based detection methods are not an option
- Literature search yielded a wide range of reported cell-free deposition methods for the Vitrocell 24/48, a similar perpendicular flow system

Cell-free Options to Estimate Deposition

Geometry Preserved?	Height of trumpet/nozzle	Insert?	Collection Method	Citation
NO	Not reported	No	18.5 mL DPBS in base	Majeed et al., Toxicology Letters, 2014
NO	Not reported	Yes, 8 mm stainless steel	8 mm Cambridge filters	Zhang et al., Toxicology In Vitro, 2022
NO	Not reported	Yes, 8 mm stainless steel	125 μ L cell culture media	Verstraelen et al., ALTEX, 2021
NO	Not reported	Yes, 24-well ThinCert	100 μ L DPBS in insert	Steiner et al., Toxicology In Vitro, 2018
NO	Not reported	Yes, 24-well Transwell	100 μ L PBS in insert	Giralt et al., Toxicology Letters, 2020

- Cell-free collection methods that change geometry of the ALI system will impact deposition
- To preserve geometry near the air-liquid interface, we paired basolateral collection methods with a membrane-free transwell

Cell-free Controls Rarely Predict Cell Deposition

Fluorescein
 Rhodamine

ACCES Deposition

	Fluorescein	Rhodamine
	(ng/cm ² /h)	(ng/cm²/h)
16HBE Cells	552.6	5 250.9
Water	1012.6	5 28.0
Media (1% FBS)	452.7	7 133.6
TF1000 Filter	262.4	523.5

- Cell-free controls failed to provide reliable estimate of cell deposition
 - Cell culture media was the best option for estimating fluorescein deposition, but underestimated rhodamine deposition by 50%
- Both particles were generated under identical conditions, but compound-specific deposition patterns were observed
 - ο Fluorescein (-), MMAD: 1.7 μm
 - $\circ~$ Rhodamine (+), MMAD: 1.3 μm

Particle Deposition is Variable Within and Across Exposure Systems

- Across multiple ALI exposure devices, we cannot utilize cell-free options to reliably estimate deposition without validation
- Sophisticated cell extraction and analytical detection methods are required to quantify cell deposition for a given aerosol

Perkins et al, Environ Toxicol Chem, 2019

Input to AOP constructs cannot be characterized by exposure concentration:

 \rightarrow deposition and cellular uptake are dependent on exposure system and cell system.

We aimed to determine whether fluorescent tracers could distinguish between deposition and cellular uptake.

Using Fluorescent Tracers to Distinguish Between Total Deposition and Cellular Uptake

Experimental Approach:

ALI Testing Conditions

- BLAM used to generate liquid particles:
 - \circ Fluorescein MMAD: 1.7 μm
 - \circ Rhodamine MMAD: 1.3 μ m
- Krypton-85 (⁸⁵Kr) used as charge neutralizer
- Samples analyzed immediately after ALI exposure (2 h duration)

Submerged Testing Conditions

- Tested 100 μL, 50 μL, and 10 μL
 - 1. Same total dose (ng/cm²)
 - 2. Same concentration (ng/mL)
- Test agents dissolved in HBSS for direct-dosing
- Samples analyzed after 2 h to match ALI exposure duration

Set EPA

Characterization of ALI vs. Submerged Exposures

	ALI Exposure	Submerged, or Direct Liquid Application
Pros	 Most physiologically relevant Direct cell-toxicant interaction Compatible with both VOCs and particles 	 Easier and higher-throughput, no complex equipment required
Cons	 ALI exposure equipment is complex to operate and maintain Difficult to quantify delivery to cell surface 	 Incompatible with VOCs Unknown cellular uptake Volume is not standardized across direct liquid application studies Liquid application disrupts ALI conditions Measurable changes in TEER and baseline transcriptomics

Characterization of ALI vs. Submerged Exposures

EPA

NAS, Using 21st Century Science to Improve Risk-Related Evaluations, 2017

"To best inform evidence integration for risk assessment, *in vitro* studies should determine the relevant internal cellular target dose rates (amount per unit time) that result in the observed responses" – Phalen et al., *Journal of Aerosol Science*, 2021.

Fluorescein Deposition Leads to Basolateral Translocation

Fluorescein: ALI vs. Submerged (909 ng/cm²)

Exposure	Dose (µg/cm²)	Conc. (µg/mL)	%basolateral	%uptake	%yield
ALI	~0.909	N/A	96%	4%	
100 μL	0.909	3	34%	6%	84%
50 μL	0.909	6	56%	4%	83%
10 µL	0.909	30	75%	6%	91%

Basolateral Transport of Fluorescein is Volume-Dependent

Fluorescein: ALI vs. Submerged (909 ng/cm²)

€PA

Fluorescein: Volume vs Translocation

ALI vs. Submerged, Same Total Dose

Exposure	Dose (µg/cm²)	Conc. (µg/mL)	%basolateral	%uptake	%yield
ALI	~0.909	N/A	96%	4%	
100 μL	0.909	3	34%	6%	84%
50 μL	0.909	6	56%	4%	83%
10 µL	0.909	30	75%	6%	91%

Same Concentration

Exposure	Dose (µg/cm²)	Conc. (µg/mL)	%basolateral	%uptake	%yield
100 μL	0.909	3	36%	3%	87%
50 μL	0.455	3	56%	4%	92%
10 µL	0.091	3	72%	4%	93%

Cellular Uptake of Rhodamine is Volume-Dependent

Rhodamine: ALI vs. Submerged (909 ng/cm²)

EPA

Rhodamine: Volume vs Cellular Uptake

ALI vs. Submerged, Same Total Dose

Exposure	Dose (µg/cm²)	Conc. (µg/mL)	%basolateral	%uptake	%yield
ALI	0.120*	N/A	0%	100%	
100 μL	0.909	3	1%	30%	102%
50 μL	0.909	6	1%	44%	96%
10 µL	0.909	30	4%	58%	78%

Same Concentration

Exposure	Dose (µg/cm²)	Conc. (µg/mL)	%basolateral	%uptake	%yield
100 μL	0.909	3	12%	45%	84%
50 μL	0.455	3	17%	64%	90%
10 µL	0.091	3	17%	83%	59%

Mucus Retention of Rhodamine: ALI vs. Submerged

⇒EPA

Exposure	Dose (µg/cm²)	Conc. (µg/mL)	%mucus	%uptake	%yield
ALI	~0.303	N/A	77%	23%	
100 μL	0.303	1	29%	55%	67%
50 μL	0.303	2	53%	29%	71%
10 µL*	0.303	10		36%	86%

*It was not technically possible to recover 10 μL of the apical solution without disturbing and aspirating mucus.

Cell Type and Exposure Method Impacts Cellular Uptake

SEPA Direct-Dosing Study Design Impacts Target Site Exposure

- Direct liquid application is often proposed as a time- and cost-effective alternative to ALI exposures, but variable apical volumes used across liquid application studies will directly impact cellular uptake:
 - \rightarrow Internal dose ranged from 40 360 ng/cm² for a single exposure concentration in 16HBE cells

- Careful validation and characterization are required for each test agent
 - An ALI system optimized for VOC delivery may not be appropriate for aerosols without significant modifications
- CAD and CFD Modeling were time- and cost-effective approaches to redesign our exposure system and optimize operational parameters
- Fluorescent tracers can be recovered in cell lysate to quantify cell deposition and can also be applied to validate CFD models
- Cell-free controls are rarely appropriate to estimate cell deposition
- Exposure Concentration ≠ Deposition ≠ Cellular Uptake
 - This is especially important for mucus-producing cell lines!
- Submerged exposure conditions are not comparable to ALI exposures, and differences in cellular uptake must be considered when designing these studies
- Further work is needed to translate ALI deposition to Human Equivalent Concentrations (HEC) to support *in vitro* to *in vivo* extrapolation (IVIVE)

SEPA

Acknowledgements

Thank you to our CPHEA and CCTE collaborators:

Engineers, Toxicologists, Data Scientists, and Support Staff

- Mark Higuchi, PhD
- Jason Weinstein, MS
- Todd Krantz
- Paul Evansky
- Michael Monsees
- Elise Carlsten
- Wyatt Zander
- Dave Davies
- George Hudson

- Earl Puckett
- Lisa Dailey
- Josh Harrill, PhD
- Logan Everett, PhD
- Joseph Bundy, PhD
- Rusty Thomas, PhD
- Annie Jarabek, PhD
- Shaun McCullough, PhD

MedTec Biolab Inc.

• Jose Zavala, PhD

UNC School of Medicine

• Adam Speen, PhD

Know anyone who is graduating soon? We are hiring a new postdoc! ORISE opportunity: EPA-ORD-CPHEA-PHITD-2022-07 at zintellect.com